企业公众号
系统的复杂度取决于特定的应用需求。选择一个好的零件,不仅要考虑一个零件的性能(如分辨率、帧率、测量算法等)是否能满足需求。智能产线检测还要考虑系统的环境条件。比如在工业领域,这些环境条件包含部件变化,移载,定位,处理接口,振动,环境光,温度,灰尘,油污,水,电磁辐射等。智能产线检测在极端恶劣条件下,有时候需要将机器视觉组件添加保护措施。典型的例子,有些相机需要在相对洁净环境下使用。但是,通常情况下,工业环境可以直接使用工业相机。就算是稳定的视觉系统,往往会因为外部的影响导致结果很不理想,比如,振动会导致图像模糊失真,而可变的零件会导致得出不同的图像,过长的曝光时间会导致运动物体的图像锐度失真。
1、从生产效率的角度来看,由于长时间工作后操作者容易感到疲劳,因此人工视觉的质量低下,准确性不高,机器视觉可以大大提高生产效率和自动化程度。2.智能产线检测从成本控制的角度来看,培训一名合格的经营者需要企业管理者花费大量的人力和物力,而简单的培训远远不够。提高操作人员的实际水平需要很多时间。智能产线检测只要机器视觉系统设计、调试和运行得当,就可以长期连续使用,保证生产效果。3.在焊接、火药制造等特殊工业环境中,人工视觉可能对操作人员的人身安全构成威胁,机器视觉可以在一定程度上有效避免这些风险。
机器视觉的主要任务:通过图像分析,生成一组描述信息,用于图像中涉及的场景或物体。也就是说,机器视觉系统的输入是图像(或图像序列),输出是对这些图像的感知描述。这组描述与这些图像中的对象或场景密切相关,智能产线检测可以帮助机器完成指导机器人系统与周围环境交互的特定后续任务。举个例子:指导机器手臂按要求抓取传送带上的零件。零件的类型、位置和方向是任意的。当传送带上的零件通过上摄像头时,智能产线检测可以通过机器视觉生成一组零件描述:类型、位置和方向,从而指导机器人手臂按要求抓取。
常见的表面缺陷包括金属表面的划痕、孔、斑点、非金属表面的混合、损伤、污渍、纸张表面的色差、压痕、玻璃等。一般来说,智能产线检测表面缺陷通常是物理和化学不均匀的局部区域。智能产线检测产品的外观对企业的产品销售和质量非常重要,因此对企业非常重视。传统的表面缺陷检测方法是人工检测,但不准确,抽样率高,人员成本高,强度高,不利于产品质量控制。智能视觉表面缺陷检测系统可以在很大程度上克服上述缺陷,提高公司的生产效率和质量保证,从而提高市场竞争力。
企业公众号