企业公众号
温度会影响LED光源的性能,随着LED温度上升,其亮度下降,这可以通过光源控制器来进行亮度输出补偿。由于需要良好的热设计,LED自身产生的热量也会加速老化甚至直接报废。机器视觉系统其他部件也会有相应的温度限值,比如工业控制器/嵌入式PC一般都能使用工业环境,但如果没有风扇,那么很可能PC也会报废。机器视觉系统除了选择好的硬件外,还应考虑被测物体本身对温度的敏感性,以保证视觉成像的稳定性。例如,金属物体对温度有热膨胀和冷收缩。因此,当测量这些物体时,长度和体积会发生变化。
机器视觉与图像处理、模式分类和场景分析三个领域密切相关。(1)图像处理主要是根据现有图像获得新图像。由于获得的是图像,其输出结果仍需要分析和解释。(2)模式分类的主要任务是:对“模式”进行分类。这些“模式”是指事物的一组属性或者说特征。通过这些属性特征,机器视觉系统将其划归为已知类中的某一类,也就是识别出了这个事物。(3)场景分析的重点是将简单的描述转化为更复杂、更详细、更有利于我们判断或得出结论的描述。机器视觉系统这些输出描述深化了输入描述,进一步解释了事物之间的深层联系。
对于产品尺寸的测星包括产品的一维、二维和三维尺寸测量,机器视觉系统运用机器视觉测量方法不但速度快、非接触、易于自动化,而且还精度高。相机与显微镜相结合的测量方法,如晶圆测量、芯片测量等。测量原理:利用摄像机可以获得三维物体的二维图像,即可以实现实际空间坐标系与摄像机平面坐标系之间的透视变换。三维曲面轮廓或三维空间点位和大小可以通过多个摄像机从不同方向拍摄的两帧(或两帧以上)二维图像综合测量。目前,机器视觉测量技术的精度已达到亚微米以上,可满足现阶段大部分自动化生产的精度要求。通过机器视觉系统的测量和定位,机器视觉系统生产线可以更快、更高的生产效率。
社会进步永远离不开以人为本。在满足了人们的基本需求之后,工业生产必须朝着越来越精细化、智能化的方向发展。智能视觉就是这个时代的产物。机器视觉系统工业3.革命后,自动化时代已经进入,实现了“时代无人(少人)”。在工业4.0时代,随着机器视觉的应用,少数工厂已将实现了“无人时代”。工业4.0时代的技术特征——视觉和图像技术是核心(从“智眼”到“智人”)。机器视觉技术是20世纪人类伟大的技术之一。机器视觉系统80%的人通过眼睛感知外部信息,图像包含较多的信息。视觉图像技术在信息时代注定要成为三脚架,尤其是在工业信息时代。
企业公众号