企业公众号
视觉定位要求机器视觉系统能够快速准确地找到被测零件并确认其位置。在半导体包装领域,设备需要根据机器视觉获取的芯片位置信息调整拾取头,准确拾取芯片并绑定,这是机器视觉工业领域视觉定位基本的应用。事实上,物体分拣应用是基于识别和检测后的一个环节,精密量仪系统通过机器视觉系统处理图像,实现分拣。在机器视觉工业应用中常用于食品分拣、零件外貌瑕疵自动分拣、棉花纤维分拣等。机器视觉上游有光源、镜头、工业相机、图像采集卡、图像处理软件等硬件和软件供应商,中游有集成和机器设备供应商,下游应用广泛,精密量仪系统主要下游市场包括电子制造业、汽车、印刷包装、烟草、农业、医药、纺织运输等领域。
不过,对不需要集成的机器视觉系统的需求肯定很高。机器视觉应用的易用性一直是用户的痛点,也是市场上组件和软件制造商的目标。在20世纪80年代中期,精密量仪系统许多机器视觉组件开始出现,它们不需要低级编程和用户界面,这使得工具更容易配置。智能相机技术在20世纪90年代的爆炸式发展,巩固了机器视觉的易用性。其结果是:许多要求较低的机器视觉应用程序可以使用只需要很少配置甚至不需要配置的组件来解决。精密量仪系统发布或引入了一些新组件,声称机器视觉任务的粗略配置可以消除某些应用。
机器视觉系统通过光学系统将被摄对象转换为图像信号,精密量仪系统然后将图像信号传输到图像采集卡,并根据像素分布、亮度、颜色等信息转换为数字信号。图像处理单元可以有效地计算这些数字信号,并获得拍摄目标的特征值,从而指导设备根据判断结果执行相应的操作。机器视觉是用机器代替人眼来测量和判断。本质上,机器视觉是图像分析技术在工厂自动化中的应用。这些决策是通过使用光学系统、工业数码相机和图像处理工具来实现的,精密量仪系统通过指挥特定的设备来模拟人类的视觉功能并做出相应的决策。
系统的复杂度取决于特定的应用需求。选择一个好的零件,不仅要考虑一个零件的性能(如分辨率、帧率、测量算法等)是否能满足需求。精密量仪系统还要考虑系统的环境条件。比如在工业领域,这些环境条件包含部件变化,移载,定位,处理接口,振动,环境光,温度,灰尘,油污,水,电磁辐射等。精密量仪系统在极端恶劣条件下,有时候需要将机器视觉组件添加保护措施。典型的例子,有些相机需要在相对洁净环境下使用。但是,通常情况下,工业环境可以直接使用工业相机。就算是稳定的视觉系统,往往会因为外部的影响导致结果很不理想,比如,振动会导致图像模糊失真,而可变的零件会导致得出不同的图像,过长的曝光时间会导致运动物体的图像锐度失真。
机器视觉就是机器的视觉,换句话说:就是将视觉感知赋予机器,使机器具有和生物视觉系统类似的场景感知能力。视觉是我们强大的感知方式,我们可以在不实际接触的情况下,精密量仪系统通过视觉感知的方式获取周围环境的很多信息。在计算机出现后,精密量仪系统人们开始尝试将视觉感知能力赋予机器。由于生物视觉系统非常复杂,我们不能使机器系统具有这种强大的视觉感知能力。在这一阶段,我们仍然致力于在可控环境中构建一个机器视觉系统来处理特定的任务。由于工业视觉环境可控,处理任务具体,大部分机器视觉都应用于工业。
企业公众号