企业公众号
温度会影响LED光源的性能,随着LED温度上升,其亮度下降,这可以通过光源控制器来进行亮度输出补偿。由于需要良好的热设计,LED自身产生的热量也会加速老化甚至直接报废。机器视觉系统其他部件也会有相应的温度限值,比如工业控制器/嵌入式PC一般都能使用工业环境,但如果没有风扇,那么很可能PC也会报废。机器视觉系统除了选择好的硬件外,还应考虑被测物体本身对温度的敏感性,以保证视觉成像的稳定性。例如,金属物体对温度有热膨胀和冷收缩。因此,当测量这些物体时,长度和体积会发生变化。
中国制造业经历了机械化、自动化、数字化等发展阶段,建立了完整的制造体系和制造基础设施,在全球产业链中发挥着重要作用。这使中国具可能实现智能装备制造,推动全球产业链改革。一是取得了一大批相关的基础研究成果,机器视觉系统掌握了长期制约我国产业发展的部分智能装备制造技术,如机器人技术、感知技术、复杂制造系统、智能信息处理技术等。初步形成了以新型传感器、智能控制系统、工业机器人、自动化生产线为代表的智能设备制造产业体系。二是我国制造业数字化具备一定的基础。目前指定规模以上的工业企业在研发设计中应用数字工具的渗透率已达54%,机器视觉系统生产线上数控设备的比例已达30%。
硬件的选型:稳定的图像特征提取是图像分析与图像识别的前提,确保一个稳定的成像传输到图像处理中心才能确保软件处理图像的准确性。机器视觉系统影响成像稳定性的因素有很多,比如周围环境、物体变化、视觉硬件等。视觉测试的硬件选择是一项困难的工作,工程师需要对硬件本身和硬件供应商非常熟悉,并有足够的选择经验。机器视觉系统在实验室运行的机器视觉系统和实际工作场景运行的系统面对的环境是天差地别的。机器视觉检测设备包括光源、镜头、相机、图像采集卡、数据传输、图像处理和测量软件等重要部件。随着各个部件的性能的提升,机器视觉系统的能力也呈指数级增长。
然而,与发达国家相比我国还有较大差距,机器视觉系统体现在以下几个方面:一是智能设备制造基础理论和技术体系建设滞后。目前,我国主要关注智能设备制造技术跟踪和技术引进,基础研究能力相对不足,引进机器视觉系统技术消化吸收不足,缺乏原创创新;控制系统、系统软件等关键技术环节薄弱,技术系统不完整。二是我国智能设备制造的数字化发展基础相对薄弱,制造业的整体发展仍处于机械自动化向数字化自动化的过渡阶段。如果德国工业4.0作为参照系,比较一致的观点是,中国总体上还是2.0时代,一些企业正在向3.0时代迈进。
企业公众号