企业公众号
不过,对不需要集成的机器视觉系统的需求肯定很高。机器视觉应用的易用性一直是用户的痛点,也是市场上组件和软件制造商的目标。在20世纪80年代中期,智能产线系统许多机器视觉组件开始出现,它们不需要低级编程和用户界面,这使得工具更容易配置。智能相机技术在20世纪90年代的爆炸式发展,巩固了机器视觉的易用性。其结果是:许多要求较低的机器视觉应用程序可以使用只需要很少配置甚至不需要配置的组件来解决。智能产线系统发布或引入了一些新组件,声称机器视觉任务的粗略配置可以消除某些应用。
根据工厂纵向系统由三层结构组成:过程控制系统(SFC),生产执行系统(MES),资源规划系统(ERP)。智能工厂是这三层的上下连接,每模块化,共同形成智能平台;同时,构建生产数据中心。这样可以实现智能产品核智能设备之间的数据流,从而实现智能产线系统自动数据采集、自动数据传输、自动数据决策、自动操作、自主故障处理等。横向集成是指集成不同制造阶段的智能系统,包括材料、能源和信息配置(如原材料、生产工艺、产品外部材料、营销等),以及不同公司之间的价值网络配置。水平整合和垂直整合,价值链整合形成智能制造网络。智能产线系统横向整合通过互联网、物联网、云计算、大数据、移动通信等新技术手段,高度整合分布式智能生产资源,构建基于网络的智能工厂的整合。横向集成也是实现价值链集成的基础,没有横向集成,也就没有价值链集成。
对于产品尺寸的测星包括产品的一维、二维和三维尺寸测量,智能产线系统运用机器视觉测量方法不但速度快、非接触、易于自动化,而且还精度高。相机与显微镜相结合的测量方法,如晶圆测量、芯片测量等。测量原理:利用摄像机可以获得三维物体的二维图像,即可以实现实际空间坐标系与摄像机平面坐标系之间的透视变换。三维曲面轮廓或三维空间点位和大小可以通过多个摄像机从不同方向拍摄的两帧(或两帧以上)二维图像综合测量。目前,机器视觉测量技术的精度已达到亚微米以上,可满足现阶段大部分自动化生产的精度要求。通过机器视觉系统的测量和定位,智能产线系统生产线可以更快、更高的生产效率。
机器视觉与图像处理、模式分类和场景分析三个领域密切相关。(1)图像处理主要是根据现有图像获得新图像。由于获得的是图像,其输出结果仍需要分析和解释。(2)模式分类的主要任务是:对“模式”进行分类。这些“模式”是指事物的一组属性或者说特征。通过这些属性特征,智能产线系统将其划归为已知类中的某一类,也就是识别出了这个事物。(3)场景分析的重点是将简单的描述转化为更复杂、更详细、更有利于我们判断或得出结论的描述。智能产线系统这些输出描述深化了输入描述,进一步解释了事物之间的深层联系。
企业公众号