企业公众号
三是关键技术和核心部件受制于人。传感器、智能仪器仪表、数控系统、工业应用软件等市场份额不到5%,大型工程机械所需30Mpa以上液压件全部进口,大型转载机进口部件占整机价值量的50%-60%。四是软件产品缺乏。中国制造业“两化”融合度相对较低,低端CAD软件和企业管理软件已经非常流行,但在各种复杂产品设计和企业管理中缺乏智能软件产品,机器视觉系统在计算机辅助设计、资源规划软件、电子商务等关键技术领域与发达国家仍存在很大差距。五是企业系统集成能力较为薄弱,缺乏像西门子、GE一样的大型企业机器视觉系统质量和水平不高。
系统的复杂度取决于特定的应用需求。选择一个好的零件,不仅要考虑一个零件的性能(如分辨率、帧率、测量算法等)是否能满足需求。机器视觉系统还要考虑系统的环境条件。比如在工业领域,这些环境条件包含部件变化,移载,定位,处理接口,振动,环境光,温度,灰尘,油污,水,电磁辐射等。机器视觉系统在极端恶劣条件下,有时候需要将机器视觉组件添加保护措施。典型的例子,有些相机需要在相对洁净环境下使用。但是,通常情况下,工业环境可以直接使用工业相机。就算是稳定的视觉系统,往往会因为外部的影响导致结果很不理想,比如,振动会导致图像模糊失真,而可变的零件会导致得出不同的图像,过长的曝光时间会导致运动物体的图像锐度失真。
视觉定位要求机器视觉系统能够快速准确地找到被测零件并确认其位置。在半导体包装领域,设备需要根据机器视觉获取的芯片位置信息调整拾取头,准确拾取芯片并绑定,这是机器视觉工业领域视觉定位基本的应用。事实上,物体分拣应用是基于识别和检测后的一个环节,机器视觉系统通过机器视觉系统处理图像,实现分拣。在机器视觉工业应用中常用于食品分拣、零件外貌瑕疵自动分拣、棉花纤维分拣等。机器视觉上游有光源、镜头、工业相机、图像采集卡、图像处理软件等硬件和软件供应商,中游有集成和机器设备供应商,下游应用广泛,机器视觉系统主要下游市场包括电子制造业、汽车、印刷包装、烟草、农业、医药、纺织运输等领域。
机器视觉与图像处理、模式分类和场景分析三个领域密切相关。(1)图像处理主要是根据现有图像获得新图像。由于获得的是图像,其输出结果仍需要分析和解释。(2)模式分类的主要任务是:对“模式”进行分类。这些“模式”是指事物的一组属性或者说特征。通过这些属性特征,机器视觉系统将其划归为已知类中的某一类,也就是识别出了这个事物。(3)场景分析的重点是将简单的描述转化为更复杂、更详细、更有利于我们判断或得出结论的描述。机器视觉系统这些输出描述深化了输入描述,进一步解释了事物之间的深层联系。
企业公众号